Positive periodic solution for high-order p-Laplacian neutral differential equation with singularity

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive periodic solution for p-Laplacian neutral Rayleigh equation with singularity of attractive type

In this paper, we consider a kind of p-Laplacian neutral Rayleigh equation with singularity of attractive type, [Formula: see text] By applications of an extension of Mawhin's continuation theorem, sufficient conditions for the existence of periodic solution are established.

متن کامل

Positive periodic solution for higher-order p-Laplacian neutral singular Rayleigh equation with variable coefficient

where p > , φp(x) = |x|p–x for x =  and φp() = , c ∈ Cn(R,R) and c(t + T) ≡ c(t), f is a continuous function defined in R and periodic in t with f (t, ·) = f (t + T , ·) and f (t, ) = , g(t,x) = g(x) + g(t,x), where g : R × (, +∞) → R is an L-Carathéodory function, g(t, ·) = g(t + T , ·), g ∈ C((,∞);R) has a singularity at x = , e : R→ R is a continuous periodic function with ...

متن کامل

Periodic solution for p-Laplacian Rayleigh equation with attractive singularity and time-dependent deviating argument

where g(t,x(t)) may be unbounded as x → 0+. Equation (1.1) is of repulsive type (resp. attractive type) if g(t,x(t))→ –∞ (resp. g(t,x(t))→ +∞) as x→ 0+. Using Mawhin’s continuation theorem, the author proved that Eq. (1.1) has at least one T-periodic solution. Zhang’s work has attracted much attention of many specialists in differential equations. In 2014,Wang [2] investigated the existence of ...

متن کامل

Periodic solutions for p-Laplacian neutral functional differential equation with deviating arguments ✩

By using the theory of coincidence degree, we study a kind of periodic solutions to p-Laplacian neutral functional differential equation with deviating arguments such as (φp(x(t) − cx(t − σ))′)′ + g(t, x(t − τ (t)))= p(t), a result on the existence of periodic solutions is obtained. © 2006 Elsevier Inc. All rights reserved.

متن کامل

Existence of periodic solutions for p-Laplacian neutral Rayleigh equation

where φp(x) = |x|p–x for x =  and p > ; σ and c are given constants with |c| = ; φp() = , f () = . The conjugate exponent of p is denoted by q, i.e.  p +  q = . f , g , β , e, and τ are real continuous functions on R; τ , β , and e are periodic with periodic T , T >  is a constant; ∫ T  e(t)dt = , ∫ T  β(t) = . As we know, the p-Laplace Rayleigh equation with a deviating argumen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Boundary Value Problems

سال: 2016

ISSN: 1687-2770

DOI: 10.1186/s13661-016-0545-3